Future of Electromagnetic Spectrum Warfare

Bryan ClarkSenior Fellow

EM spectrum more than just the radiofrequency spectrum

Innovation proceeds through phases driven by predominant sensor tech

Move and countermove accelerates in each phase until a combination or new technology and operational concepts cause competition to jump to next phase

WW I: radio & radar vs. passive countermeasures

Jamming possible but not used because friendly comms would also be affected; slow pace made exploitation of comms and radar more beneficial

WW II: Radio & radar vs. active countermeasures (jamming)

Smaller, more powerful radars & jammers and speed of conflict increased the benefit of jamming of sensors / communications in addition to exploitation

Technical advancements accelerated in active/active phase

1970s: jamming became unsustainable vs. improving defenses

Half of strike packages devoted to suppression of air defenses; "virtual attrition" demanded new approach to protecting strike forces

U.S. shifts to stealth after Vietnam

DARPA Have Blue demo led to F-117 and showed ability to reduce RF signature in some frequencies and aspects B-2 bomber built on Have Blue and F-117 to provide all-aspect stealth across wider frequency range

Shift to stealth ended w/ Cold War

Today's force uses a mix of stealthy and non-stealthy forces; but:

- RF systems of non-stealthy forces known by adversaries & difficult to change
- Adversaries can exploit "home field" to find stealthy platforms
- U.S. forces not exploiting visible and infrared portions of spectrum

Challenges of today's electronic warfare approach

U.S. systems are well known to enemy and & lack agility

Adversary EW targets U.S. EM sensors while their weapons avoid U.S. EW capabilities; hard-wired U.S. systems cannot change characteristics easily

Adversaries exploit "home field" to field long-range sensor networks

Enemy can emplace effective long-range passive and low-frequency sensors and better understand EM environment; could enable them to detect U.S. forces first

Visible & IR sensors proliferating

Blacksky EO/IR satellite constellation expanding to 60 satellites by 2025; Other commercial providers and military systems expanding

New operating concepts for EM spectrum warfare

New approaches needed to find enemy without being counterdetected Center for Strategic and Budgetary Ass

Shifting to passive and LPI/LPD sensors to find targets at increasing ranges while reducing counterdetection risk to friendly forces

Avoid being targeted using EMCON, decoys and low power jamming

Counter-ISR makes large salvos necessary for a successful attack

U.S. forces will not be able to completely hide; will need instead to create large number of possible targets using decoys and by obscuring real forces

Hiding now must incorporate includes visible & IR spectra

Obscurants, decoys, and camouflage improving; only need to be good enough to make real system and decoy look alike

EM spectrum operations are essential to successful power projection

New EMS technologies

Priorities for EMS warfare tech

Networked

- Agile and maneuverable
- Multifunction

Smaller and less expensive

Cognitive

Networking essential to future EM spectrum operational concepts

Passive and multi-static sensing, decoys, collaborative weapons, and LPI/LPD jamming require platforms and payloads to be connected

Agility needed to evade countermeasures & detection

Maneuver in frequency, power, time, beam direction, & beam shape to protect friendly EMS operations while denying those of enemy; including visible and IR 23

Multifunction arrays more efficient & enable one array on small platforms

Each platform and payload must participate in EMS warfare network; multifunction arrays reduce the number of separate systems needed

Smaller, cheaper systems needed to proliferate EMS capabilities

New concepts being pursued:

- Use more expendable jammer, decoy, sensor payloads
- Incorporate almost every manned or unmanned platform
- Employ multiple RF and EO/IR arrays per platform

EMS emitter/receivers need to become commoditized to enable every platform and payload to participate in network

Shift from automated systems to cognitive or intelligent controls

Today's systems react to recognized situations w/ pre-planned responses; future systems must assess environment to develop & refine COAs that best exploit it 26

Challenges to change

New tech maturing, not being fielded

Acquisition structure stove-piped

Numerous acquisition agents

- PMs for each different mission (radio, EW, RWR, radar, SIGINT)
- PEOs organized by platform, not mission or system

No incentives for cooperation

- Multifunction EM systems cross multiple PMs and PEOs
- Increases programmatic risk

Lack of requirements "pull"

- Operating concepts outdated
- Limited options to work around requirements process

New USD(R&E) and USD(A&S)

Could help improve pull of new technologies into acquisition

Today's CONOPs limit innovation

- Concepts don't leverage new tech
 - Networked emitters/receivers
 - Adaptive EMS systems
 - Agile EO/IR/RF operations
 - Multifunction arrays & controllers
- Use system v. system approach
 - Pre-planned techniques
 - Library of threats and responses
- Prevent changes to requirements
- EW strategy could change this
 - New directions in concepts

Recent improvements

EW EXCOMM driving change

New strategy starts shift

Organize to maintain EMS superiority

- -Make EMS a domain
- -Improve EW workforce

Train and educate in EW competencies

- -Maneuver-mindset regarding ops in EMS
- Expand warfighter knowledge and competency

Equip force w/agile, adaptive, integrated EW

- -Field EA, incl. directed energy, for EMS superiority
- -Field capabilities to detect, locate & replicate signals
- -Maintain strike and counter-A2/AD capabilities
- Field EW battle management capabilities
- -Field interoperable. Asymmetric EW capabilities
- -Develop M&S to aid decision making

Build and maintain partnerships

-Academic, international, and industrial base

Increasing investment in EW; but more importantly, adopting new approaches to EMS Warfare and equipping force to use them

EW Strategy treats EMS as domain Content for Strategic and Bud

DARPA prioritizing needed tech

DARPA developing the exact capabilities needed for the current and next phase of EMS warfare

Questions?

Navy RDTE overwhelming in RF

Navy focused on confusing or defeating overhead and land-based radars and passive ELINT/SIGINT sensors; at risk of EO/IR search technologies

Army & USAF balance EO vs. RF

Army and Air Force better positioned for shift to passive and EO/IR sensing, but investments mostly counter IR-guided missiles, rather than EO/IR sensors